Weighing and Integrating Evidence for Stochastic Simulation in Bayesian Networks
نویسندگان
چکیده
Stochastic simulation approaches perform probabilistic inference in Bayesian networks by estimating the probability of an event based on the frequency that that· event occurs in a set of simulation trials. This paper describes the evidence weighting mechanism, for augmenting the lo�ic sampling stochastic simulation algo rithm l5]. Evidence weighting modifies the logic sampling algorithm by weighting each simula tion trial by the likelihood of a network's evi dence given the sampled state node values for that trial. We also describe an enhancement to the basic algorithm which uses the eviden tial integration technique [2]. A comparison of the basic evidence weighting mechanism with the Markov blanket algorithm [8], the logic sampling algorithm, and the evidence integra tion algorithm is presented. The comparison is aided by analyzing the performance of the algorithms in a simple example network.
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملMHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security
Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989